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Recommendations for algorithmic fairness 
assessments of predictive models in healthcare: 

evidence from large-scale empirical analyses



Machine learning with electronic health records

Reps, Jenna M., et al. "Design and implementation of a standardized framework to generate 
and evaluate patient-level prediction models using observational healthcare data." Journal of 
the American Medical Informatics Association 25.8 (2018): 969-975.



Aspirations for algorithmic fairness in healthcare
1. Assess systematic differences in model behavior or performance 

across patient populations for model reporting and auditing

2. Mitigate systematic differences in model behavior or performance 
across patient populations

3. Build models that predict outcomes well for each population

4. Proactively identify and mitigate upstream biases in data collection, 
problem formulation, and measurement

5. Ensure that machine-learning-enabled interventions prevent the 
exacerbation of disparities and promote health equity



Limiting the scope
1. Assess systematic differences in model behavior or performance 

across patient populations for model reporting and auditing

2. Mitigate systematic differences in model behavior or performance 
across patient populations

3. Build models that predict outcomes well for each population

4. Proactively identify and mitigate upstream biases in data collection, 
problem formulation, and measurement

5. Ensure that machine-learning-enabled interventions prevent the 
exacerbation of disparities and promote health equity



Questions explored in this work

● What are the best practices for conducting algorithmic fairness 
assessments to evaluate predictive models of clinical outcomes?

○ What should be measured and why?

○ How should the results be interpreted?

● What are the best practices for developing predictive models that 
enable fair clinical decision making?

○ Should model training objectives include explicit fairness constraints?

○ How can we build models that predict outcomes well for each group?
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Example: primary prevention of atherosclerotic 
cardiovascular disease (ASCVD)

Lloyd-Jones, et al . (2019). Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A 
Special Report From the American Heart Association and American College of Cardiology. Circulation, 139(25), E1162–E1177.



Constructing an ASCVD cohort 
● Extract from claims database

○ All patients age 40-75, no prior 
CVD or statin prescription 

● Define 10-year ASCVD as any
○ MI, stroke, or fatal CHD

● Define censoring event as earliest of 
○ End of enrollment, statin prescription, or 

death
● Feature extraction

○ All prior conditions, procedures, lab orders 
(+abnormal flags), medications, and 
demographics

Pfohl, S.R, et. al. (2021). Algorithmic fairness assessments for atherosclerotic 
cardiovascular disease risk estimation: calibration, net benefit, and equalized odds.



What are the best practices for conducting 
algorithmic fairness assessments to evaluate 
predictive models of clinical outcomes?
● What should be measured and why?

● How should the results be interpreted?



1. Identify intended intervention its effectiveness

2. Identify stakeholders, their values, and any conflicts
a. Incl. patients and especially underrepresented or marginalized populations

3. Document dataset preparation, cohort construction, and model development 
protocols

4. Clearly specify and justify assumptions on data generating mechanisms and 
measurement processes

a. Ideally, there is no unmodeled differential measurement error in outcomes across 
groups

A prerequisite: transparent reporting and design



1. Report and contextualize stratified performance metrics

2. Prioritize calibration-based fairness assessments

3. Do not consider differences in TPR, FPR, PPV, or classification rates as being 
necessarily problematic

4. Do not consider context-free fairness assessments as sole indicators of 
whether ML-intervention introduces/exacerbates harm or is equity-promoting

Recommendations for evaluation



Definitions and notation
● Dataset: 
● Features:
● Binary outcome:      
● Attribute stratifying the data into K groups:
● Model:
● Score: 
● Threshold-predictor: 
● Bayes-calibrated score: 
● Calibration curve: 



Summary of algorithmic fairness criteria



Calibration and sufficiency 



● Calibration enables informed interpretation of risk estimates as probabilities

● Group calibration and sufficiency are consistent with the goal of treating the 
set of patients with a given risk of the outcome similarly across groups

Why calibration?



Calibration curves: perfect calibration



Calibration curves: assessing overestimation



Calibration curves: implied threshold



Calibration curves: adjusted threshold



Calibration curves: assessing over/underestimation



Calibration of a ten-year ASCVD risk estimator



● The calibration curve can be used as a proxy for the conditional utility of the 
intervention conditioned on the risk score

● Sufficiency implies a shared utility-maximizing threshold if properties of the 
intervention and preferences do not differ across groups

Calibration, thresholds, and utility



Conditional utility and the fixed-cost utility function

uTP=0.8 uFP=0
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Calibration and conditional utility (simulation)



Effect of calibration on optimal threshold (simulation)



Calibrated models share a maximum utility threshold



Extending the approach for ASCVD risk estimation:
conditional utility with constant relative risk reduction

Utility of no ASCVD: u0=1

Utility of ASCVD: u1=0

Relative risk reduction: r=0.275

Expected harm: kharm=0.055



Conditional utility with constant relative risk reduction

Utility of no ASCVD: u0=1

Utility of ASCVD: u1=0

Relative risk reduction: r=0.275

Expected harm: kharm=0.055



Net benefit of statin initiation
● Net benefit assuming expected harm is independent of risk estimate

○

● If relative risk reduction is constant
○

● Simplifying assumptions, following Soran et. al [1]
○ Use a constant expected relative risk reduction of 27.5%, assuming the use of moderate intensity 

statin (20 mg atorvastatin)

[1] Soran, H., Schofield, J. D., & Durrington, P. N. (2015). Cholesterol, not just cardiovascular risk, is important in 
deciding who should receive statin treatment. European Heart Journal, 36(43), 2975–2983.



Assessing net benefit of ASCVD risk estimation



How should we interpret equalized odds?



How should we interpret equalized odds violation?
● Violation is expected if incidence of the outcome differs and group 

calibration holds

● May or may not be problematic: requires assessment of why rates differ
○ Biases in the measurement of the outcome relative to the true construct of interest
○ Population-level differences in outcomes due to social determinants of health, structural 

racism, or other factors
○ Simple differences in model fit



Score distributions and conditional error rates



Fairness criteria over score distributions



● Post-processing reduces net 
benefit relative to calibration and 
threshold-selection

○ Explicit threshold adjustment results in 
reduced net benefit

○ Transformations of the score result 
either in reduction in fit or implicit 
threshold adjustment through 
miscalibration

Is post-processing for equalized odds appropriate?

False positive rate
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Hardt, M., Price, E., Srebro, N. N. N., & Others. (2016). Equality 
of Opportunity in Supervised Learning. Advances in Neural 
Information Processing Systems, 3315–3323. 



Miscalibration induced by post-processing for EO



● Empirical risk minimizer → model is calibrated and satisfies sufficiency

○

● Empirical risk minimizer has non-trivial demographic parity and equalized 
odds violation when prevalence/incidence differs

○  

○

Theoretical interpretation

Liu, L. T., Simchowitz, M., & Hardt, M. (2019). The Implicit Fairness Criterion of Unconstrained Learning. Proceedings of 
the 36th International Conference on Machine Learning (Vol. 97, pp. 4051–4060). 



What about positive predictive value (PPV)?



Key points for evaluation with fairness criteria
● Calibration-based criteria are consistent with the use of the maximum utility 

decision rule given a model

● Calibration-based criteria can be misleading for poorly-fitting models

● Differences in TPR, FPR, PPV, or classification rate are expected if group 
calibration holds and outcome incidence differs 

● Post-processing to satisfy equalized odds, demographic parity, or predictive 
parity typically reduce utility



What are the best practices for developing predictive 
models that enable fair clinical decision making?

● Should model training objectives include explicit fairness constraints?

● How can we build models that predict outcomes well for each group?



1. Identify the set of models conferring the largest net benefit for each group
a. Typically the best-fitting set of models that are calibrated for each group at relevant 

thresholds

2. Unpenalized ERM using entire dataset is typically sufficient, optionally 
recalibrating by group

3. Objectives that penalize equalized odds violation do not generally increase net 
benefit or model performance

4. Set thresholds based on calibration, intervention effectiveness, preferences, 
and cost, not targeted TPR, FPR, or PPV

Key points for model development



● Constrained optimization

○  

● Regularized learning objectives

○  

● Forms of R
○ Divergence-based

■

○ Metric-based

■

“In-processing” approaches for algorithmic fairness

Pfohl, S. R., Foryciarz, A., & Shah, N. H. (2021). An empirical 
characterization of fair machine learning for clinical risk 
prediction. Journal of biomedical informatics, 113, 103621.



Regularized learning objectives for fairness
● For equalized odds (threshold-free)

○ Maximum mean discrepancy

■  

○ Difference in means 

■

● Regularizers that incorporate rate-based metrics via differentiable surrogates
○

○

○



Effect of EO regularization on calibration, TPR, FPR



Effect of EO regularization on model performance

Calibration error



ERM confers the most calibrated net benefit

Unadjusted UnadjustedCalibrated Calibrated



Recalibration does not preserve EO satisfaction



● Equalized odds penalties
○ Typically confer less net benefit than unpenalized ERM after accounting for calibration
○ Any apparent benefits with minor amounts of regularization are due to miscalibration of the 

unpenalized ERM model
○ Strong penalties induce miscalibration and reduction in discriminatory capabilities of the model

● Calibration/sufficiency penalties or objectives
○ Not thoroughly tested or characterized, but important future direction
○ Value unclear due to consistency of calibration and sufficiency with loss minimization and the 

relative ease of calibration-based post-processing (e.g. recalibration or multi-calibration)

Should models include explicit fairness constraints?



Approaches to target performance over groups
● Unconstrained empirical risk minimization (ERM) applied over the whole 

population (“pooled”) 

● Unconstrained ERM applied separately for each group (“stratified”)

● Regularized learning objectives over model performance measures

○ Minimize differences in AUC and log-loss across groups

● Distributionally robust optimization (DRO) formulated to optimize to target 
worst-case performance over groups

○ Optimize worst-case AUC or log-loss across groups



● Distributionally robust optimization for supervised learning
○

● Uncertainty set over shifts in the proportion of data from each group

○  

● The Group DRO objective (Sagawa et al, 2020)

○

● Implemented as alternating updates

○ Exponentiated gradient ascent over weights: 

○ Weighted SGD: 

Robustness to subpopulation shift

Sagawa, Shiori, et al. “Distributionally robust neural networks for group 
shifts: on the importance of regularization for worst-case generalization” 
International Conference on Learning Representations. 2020.



Flexible DRO objectives
● General form of the update

○ Update over lambda:

○ Update over model parameters (unchanged): 

● An AUC-based objective (no surrogates)

○

Pfohl, S. R., Zhang, H., Xu, Y., Foryciarz, A., Ghassemi, M., & Shah, N. H. (2021). A comparison of approaches to 
improve worst-case predictive model performance over patient subpopulations. arXiv preprint arXiv:2108.12250.



Model training and evaluation workflow

Pfohl, S. R., Zhang, H., Xu, Y., Foryciarz, A., Ghassemi, M., & Shah, N. H. (2021). A comparison of approaches to 
improve worst-case predictive model performance over patient subpopulations. arXiv preprint arXiv:2108.12250.



Comparison of approaches - performance



Comparison of approaches - net benefit

Unadjusted

Calibrated



● Approaches that target differences or worst-case performance measures do 
not generally confer more net benefit than ERM after accounting for 
miscalibration

● In practice, DRO approaches that target worst-case performance do not seem 
to improve worst-case performance over simpler ERM strategies

○ Does not necessarily preclude further methods development

● Calibration can be improved over ERM in some instances
○ Stratified training
○ AUC-based penalties and DRO objectives

Can we improve on standard paradigms?



1. Transparently document protocols and problem formulation

2. Learn the best-fitting set of models for each population that are calibrated at 
relevant thresholds

3. Comprehensively report and contextualize stratified performance metrics

4. Prioritize calibration-based fairness assessments

5. Do not consider context-free fairness assessments as sole indicators of 
whether ML-intervention introduces/exacerbates harm or is equity-promoting

6. Current approaches to algorithmic fairness are limited in scope, but can still 
be useful

Summary of key takeaways and recommendations



Additional content



Accounting for censoring in ten-year ASCVD
● Ten-year ASCVD outcomes are often 

not fully observed due to censoring

● Can represent as a binary outcome if 
censoring is accounted for

● Use inverse probability of censoring 
weights (IPCW) for all training 
objectives and evaluation metrics

● Training objective: weighted 
empirical risk minimization (ERM)

○  



Definitions

Assume

Inverse probability of censoring weighting (IPCW)
● Weights scale inversely with the probability of 

remaining uncensored

● Weighted empirical risk minimization (ERM)

○  

● An IPCW-weighted variant of each training 
objective and evaluation metric is used



Aggregate expected utility and net benefit
● Aggregate utility is the expected utility of the decision rule over a population

● Net benefit is a normalized aggregate utility metric that parametrizes a utility 
function based on an assumed optimal threshold

Vickers, Andrew J., and Elena B. Elkin. "Decision curve analysis: a novel method 
for evaluating prediction models." Medical Decision Making 26.6 (2006): 565-574.



Net benefit of statin initiation
● Net benefit assuming expected harm is independent of risk estimate

○

● If relative risk reduction is constant
○

● Simplifying assumptions, following Soran et. al [1]
○ Moderate intensity statin (20 mg atorvastatin) → 43% reduction in LDL-C
○ Each 1 mmol/L reduction in LDL-C → 22% relative reduction in ten-year risk
○ Approximate LDL-C ~ predicted risk as a constant and compute population mean of most recent 

LDL-C measurement at prediction time → 3.01 mmol/L
○ Compute relative risk reduction:

[1] Soran, H., Schofield, J. D., & Durrington, P. N. (2015). Cholesterol, not just cardiovascular risk, is important in 
deciding who should receive statin treatment. European Heart Journal, 36(43), 2975–2983.



Detailed view of effect on net benefit at 7.5%



DRO over groups with censored binary outcomes
● IPCW variants of the alternating updates

○  

○ Update on model parameters: 

● Flexible DRO objective with IPCW-weighted AUC

○  

○  



Comparison of approaches - performance



Comparison of approaches - net benefit



Comparison of approaches - comorbidities



Comparison of approaches - comorbidities


